PRIVACY PROTECTION

Work in Progress

TSE

Bruno Jullien Yassine Lefouili TSE

Michael Riordan Columbia University

Questions

- How does the prospect of continued interaction affect website incentives to protect customer personal information?
- How do regulations restricting websites' collection and use of customer information affect economic welfare?

Motivation: Economics

- Privacy economics literature:
 - > Quality attribute: O'Brien and Smith (*FTC WP*, 2014)
 - Asymmetric information: disclosure, reputation-building (Acquisti, Taylor & Wagman, JEL, 2015)
- Moral hazard:
 - > Websites collect valuable personal consumer information.
 - > Consumers imperfectly informed about website policies.
- Learning, signal-jamming (Judd and Riordan, *ReStud*, 1994):
 - > Consumers unsure about value of continued interaction.
 - > Website actions affect "user's experience" and retention

Basic Model

- Unit mass of consumers visit a website in period 0 and may stay or not in period 1.
- Unit mass of third parties in each period, each with exactly one match.
 - > A match is good (G) with probability λ , or bad (B) with probability $1-\lambda$;
 - Information allows to identify the match but not the type of match (needs inspection)
- The service is free, but the website:
 - \triangleright obtains revenue *a* per user from advertising or merchandising;
 - > can sell information to third parties at price v_{0} .

User's experience

• A consumer is vulnerable to a bad match with probability θ , which is unknown and can be high or low, $\theta = \theta_L$ or θ_H .

> A good match gives a good experience G

> A bad match gives a bad exeprience with probability θ and no experience \emptyset otherwise

 $> r_0$ is consumers' prior belief that $\theta = \theta_L$

- Interpretation
 - targeted advertising;
 - > spam, phishing,
 - deceptive ads, or malware.

Second period

- In the second period, the website sells the information for sure so that intrusion occurs
- Based on her experience, a consumer update her beliefs about low vulnerability to r_1
- A consumer returns to the website in period 1 with increasing probability Q(r₁).
 >Q(r) = Pr(M₁(r) + ε > 0)

$$\geq M_1(r) = \lambda U_G + (1 - \lambda)(r\theta_L + (1 - r)\theta_H)U_B$$

 $\geq U_1(r) = \delta E(\max(M_1(r) + \epsilon, 0))$

Why would the website protect consumers' personal data?

- Consumers experiencing a bad match are pessimistic about their vulnerability and less likely to visit the website in the future.
- This gives the website incentives to refrain from selling personal data to third parties.
 - **Precaution**: The website refuses to sell with probability *X*
- The website takes consumer beliefs (r_{ϕ}, r_{G}, r_{B}) as given, but uses privacy policy to influence consumer's experience (probabilities of each event):

$$p_{\rm B} = \theta(1-\lambda)(1-X) \qquad p_{\rm G} = \lambda(1-X)$$
$$p_{\phi} = X + (1-\theta)(1-\lambda)(1-X)$$

Consumer learning

• Consumers take the website's privacy policy (*X*) as given and use Bayes Rule to form posterior beliefs:

 \sim

$$r_G = r_0 \qquad r_B = \frac{\theta_L}{\overline{\theta}} r_0$$
$$r_{\varnothing} = \phi(X) \equiv \frac{X + (1 - \theta_L)(1 - \lambda)(1 - X)}{X + (1 - \overline{\theta})(1 - \lambda)(1 - X)} r_0$$

- No news is good news: $r_{\phi} > r_{\rm G} > r_{\rm B}$
- $\phi(X)$ is decreasing from r_{\max} to r_0 .

Incentives to sell information

- Period 0 value of selling consumer data: v_0
- Period 1 value of retained consumer: $V_1 = \delta(a + v_0)$
- Profit $(1-X)v_0 + E(Q(r_1))V_1$
- X = 1 is optimal if and only if : $\lambda[Q(r_{\varnothing}) - Q(r_{G})] + (1 - \lambda)\overline{\theta}[Q(r_{\varnothing}) - Q(r_{B})] \ge v_{0} / V_{1}$
- The decision to sell information depends positively on consumer beliefs r_{ϕ}

Equilibrium

• Consumer beliefs "best responds" to privacy policy

$$r_{\varnothing} = \phi(X^*)$$

• Website privacy policy "best responds" to consumer beliefs:

 $> X^* = 1$ if r_{ϕ} is above a critical value defined by

 $\lambda[Q(\hat{r}_{\varnothing}) - Q(r_{G})] + (1 - \lambda)\overline{\theta}[Q(\hat{r}_{\varnothing}) - Q(r_{B})] = v_{0} / V_{1}$

- <u>Lemma</u>: The critical value is increasing in v_0 .
- <u>Proposition</u>: Equilibrium precaution X^* is unique and it is nonincreasing in $v_0/V_{1.}$

Competition on the market for information

- Suppose there are N websites with identical consumer demands (θ , ε are common to all websites)
- Consumers multi-home so there is no competition on the consumer side
- Websites compete to sell the consumer information to third parties

> Assume simultaneous pricing of information by all websites

- A price above v_0 means refusal to sell, x = Prob(refusal to sell)
- \succ Total precaution is $X=x^N$

First-period competition holding retention value constant $V_N = V_1$

- Assume the retention value is not affected by future competition so that $V_N = V_1$
- Then at most two symetric equilibria co-exist
 Coordination failure: if N > 1, there always exists an equilibrium with zero price and no precaution.
 - Coordinated equilibrium: There also exists a symmetric equilibrium with total precaution X* equal to the equilibrium value with only one website (N=1).
 Information are lower when intrusion occurs

Effect of competition on the market for information $V_N < V_1$

- Second period: all websites compete and the price of information fall to $0 \rightarrow V_N = a < V_I = a + v_I$
- Because the retention value is lower with N websites, the total level of precaution is lower with multiple websites $\rightarrow X = x^N < X^*$
- The total industry income from selling information is lower in both periods, due to price competition
- But if the alternative revenue *a* is large enough, total profit may increase

Policy/extensions

- Consumer privacy rights:
 - > Transparency
 - > Opt-out: refuse third-party sale of personal data
- Taxation
- Incentive to screen/inspect buyers of information

Consumer welfare

• In the Short Run (period 0), the consumers benefit from a good match G and are harmed by a bad match B.

Consumers are better off with <u>less</u> precaution if matches are beneficial on average:

$$/U_{G} + (1 - /)\overline{q}U_{B} > 0$$

• Long Run utility $E(U_1(r_1))$ decreases with precaution because no-intrusion is less informative.

I. Transparency / Commitment

- Suppose the law forces transparency of *X*
- The website is able observably to commit to a privacy policy.
- If a match is on average beneficial to consumers
 - > The website sells with probability 1 in period 1
 - It chooses less precaution (X) in period 0 than the equilibrium level
 - ▷ <u>Intuition</u>: The website wants to increase $\Phi(X) \rightarrow$ Equilibrium signal jamming makes no-intrusion less informative about vulnerability, reducing second period profit
- Transparency benefits consumers and the website when matches are on average beneficial

Transparency / Commitment 2

• If a match is on average detrimental to consumers, then an additional effect arises :

> The website may refrain from selling in period 1.

- If it sets $X_1 > 0$ then
 - > The value of retention V_1 decreases
 - > The retention rate Q(r) increases
 - > But the slope of $M_1(r)$ decreases
- Transparency leads to less precaution when matches are on average harmful, if *Q* is concave or weakly convex,
- The welfare effects are then ambiguous

II. Screening / inspection

- The website can screen the third party at random inspection cost *z*, drawn from *F*(*z*)
- The website inspects only if it intends to sell to G and refuse to sell to B.
- A privacy strategy is defined by a pair (*X*, *Z*): *F*(*Z*) is the probability of screening *X* is the probability of selling information to an unscreened third party (the fraction of the population of consumers)

Signal jamming

• Probability that B obtains consumer data:

$$\pi_M(X,Z) = (1-\lambda)[1-F(Z)](1-X)\}$$

• Probability that neither G nor B obtains information:

$$\pi_N(X,Z) = (1 - \lambda) F(Z) + [1 - F(Z)]X$$

Privacy policy to influence consumer experiences (B, G, Ø):

 $p_{\rm B} = \theta \pi_M(X,Z) \qquad p_{\rm G} = 1 - \pi_M(X,Z) - \pi_N(X,Z)$ $p_{\phi} = \pi_N(X,Z) + (1 - \theta)\pi_M(X,Z)$

Consumer learning

• Consumers take the website's privacy policy (*X*, *Z*) as given and use Bayes Rule to form posterior beliefs:

$$r_{\varnothing} = \Phi(X,Z) \equiv \frac{(1-\theta_L)\pi_M(X,Z) + \pi_N(X,Z)}{(1-\overline{\theta})\pi_M(X,Z) + \pi_N(X,Z)} r_0$$

- No news is good news: $r_{\phi} > r_{\mathbf{G}} > r_{\mathbf{B}}$
- Φ decreases in X and in Z

4XUS

Incentive to screen third parties

• Net benefit of selling information to G:

$$\Delta_G(r_{\varnothing}) = \lambda(v_0 - [Q(r_{\varnothing}) - Q(r_G)]V_1)$$

• Net benefit of denying information to B:

$$\Delta_B(r_{\varnothing}) = (1 - \lambda)(\overline{\theta}[Q(r_{\varnothing}) - Q(r_B)]V_1 - v_0)$$

- Precaution: $X^* \hat{I} \underset{\substack{0 \in X \in I}}{\arg \max} \{X[\Delta_B(r_{\emptyset}) \Delta_G(r_{\emptyset})]\}$
- Screening: $Z^* = \max\{\min[\Delta_G(r_{\emptyset}), \Delta_B(r_{\emptyset})], 0\}$

HRUST

Choice of $X(r_{\phi})$ and $Z(r_{\phi})$

4*RUS*7

Screening: Summary

- <u>Proposition</u>: There exists a unique equilibrium (*X**,*Z**) such that
 - > The posterior r_{ϕ} is nondecreasing in v_{0} .
 - > X is nondecreasing in v_0 (if Q_Z is not too negative)
 - >No screening if the average vulnerability is small
 - > Z is nondecreasing in v_0 when small and nonincreasing in v_0 when large (random and weak protection).

Screening: policy

- **Transparency/Commitment:** Suppose the website were able observably to commit to a privacy policy.
 - Then if matches are beneficial on average it would choose
 - \checkmark less precaution (X) than the equilibrium level;
 - \checkmark less screening (Z)
 - ✓ Consumer surplus may increase or decrease
- Taxation increases precaution and may increase inspection (when v₀ is large) or decrease it (when v₀ is small)

Conclusions

- Market forces provide positive but imperfect incentives for privacy protection.
 - Equilibrium incentives can lead to excessive precaution and deficient screening when the short-run value of selling information to third parties is sufficiently small, and if consumers on average benefit from matching with third parties.
- Transparency is welfare enhancing if consumers on average benefit from matching with third parties but could be welfare reducing otherwise
- Inspection (screening G and B) and precaution are substitutes.
- Taxation of information market raises equilibrium precaution
- Allowing consumers to opt-out of sharing their personal data leads to more precaution and has ambiguous welfare effects
- TO BE DONE: No history based discrimination (OLG model)

SUPPLEMENTARY MATERIAL

III. Taxation

- Suppose a tax *t* is imposed on the sale of information
- The ratio v_0/V_1 decreases to $\frac{(1-t)v_0}{a+(1-t)v_0}$
- Imposing a tax on the market for information raises the level of precaution (provided that there are other sources of revenue).
- The tax reduces the website's profit
- It raises consumer surplus if matches are detrimental on average and consumers are impatient
- It reduces consumer surplus if matches are beneficial on average

4XUS

IV. Opt out regime

- Suppose consumers can "opt out", i.e. require that personal information not be sold in Period 1.
 - > The consumer opts out if sufficiently pessimistic $r_1 < \check{r}$.
 - > Retention rate is $Q(\check{r})$ and increases because $Q(\check{r}) > Q(r_1)$, while the value of retention is reduced to $V < V_1 = 1$.
- If r_B < ř < r₀, then consumers:
 > opt-in in Period 0;
 - > opt out in Period 1 after a bad match. The equilibrium characterization is similar to to the baseline case, except $Q(r_{\rm B})V_1$ replaced with $Q(\check{r})V$.

Opt out

- <u>Proposition</u>: Assume $r_{\rm B} < \check{r} < r_0$ and $Q(r_{\rm B})V_1 > Q(\check{r})V$. Then permitting consumers to opt out increases precaution
- The website is worse off.
- The effect on consumers welfare is ambiguous.
 - Direct benefit of opting out when pessimistic about vulnerability.
 - > Welfare loss from less informative signal about vulnerability due to greater precaution.

Opt-out in other cases

- Assume consumers opt-in in period 0 and $Q(r_B)V_1 > Q(\check{r})V$.
- If r₀ < ř < Φ(1), then opt out provides greater incentives for precaution;
- If $\Phi(1) < \check{r} < \Phi(0)$, then opt out leads to random precaution if ν_0 is below a critical value, and no privacy otherwise;
- If *ř* > Φ(0), then opt out eliminates any incentives for protecting privacy.

Opt-out with screening

- Suppose $r_{\rm B} < \check{r} < r_0$ and $Q(r_{\rm B})V_1 > Q(\check{r})V$.
- Opt-out (weakly) increases screening because it increases the value of preventing a bad match.
- If *1* > *X* > 0, then opt-out has an ambiguous effect on precaution, because more screening mitigate the increase in precaution (higher *Z* reduces *X*).

Opt out and screening, 0<X<1

4RUS7

4RUS7

